CONFORMATIONS OF 2,4-SUBSTITUTED 9-METHYL-9-AZA-3-OXABICYCLO[3.3.1]NONAN-7-ONES

Tadashi Masamune,* Hajime Matsue, Satoshi Numata, and Akio Furusaki Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo, Japan

(Received in Japan 23 August 1974; received in UK for publication 2 October 1974)

Bicyclo[3.3.1.]nonane system provides interesting conformational problems. The molecules usually adopt preferentially the double-chair rather than the boat-chair conformation. ${ }^{1)}$ However, relative stability between these conformations is also associated with the introduction of functional groups ${ }^{2)}$ and/or hetero-atoms into the framework. 3,4) In connection with synthetic studies of laurencin, ${ }^{5)}$ we prepared several entitled compounds and examined their conformations (and hence configurations). The present paper describes the result, which indicates that all the compounds exist in the double-chair conformation, irrespective of the presence of 2,4-diaxial substituents.

The examined compounds (I ~VIII), 6) listed in Table 1 , were prepared newly, except 2,4-unsubstituted compound (I), 7) by the Robinson-Schöpf condensation of 2,4-dialkyl-3-oxaglutaraldehydes ${ }^{8)}$ with methylamine and acetonedicarboxylic acid.

Table 1 9-Methyl-9-aza-3-oxabicyclo[3.3.1]nonan-7-ones
R

The conformations were elucidated on the basis of the NMR spectra, exemplified by Fig. 1; the chemical shifts and coupling constants were estimated by comparison with those of analogous compounds ${ }^{4 b, 4 d}$) as well as by extensive spin decoupling studies. The summarized result (Table 2) is completely consistent
with the double-chair conformation for all compounds, though the conformations of N-methyl group were not assigned. The conclusive evidence was presented by the X-ray crystallography of compound VI.

The crystals are triclinic, with two molecules in a unit cell with the di-

Fig. 2 The molecular conformation and the bond distances (A) of compound VI.
mensions of $a=8.660(2), b=$ $9.615(2), c=8.816(2) \AA, \alpha=$ $72.28(2)^{\circ}, \beta=98.99(3)^{\circ}$, and γ $=97.85(2)^{\circ}$, The space group is $\mathrm{P} \overline{\mathrm{l}}$. Intensities of 2360 unique reflections with 2θ values up to 140° were measured on an automatic, four-circle diffractometer using CuK α radiation monochromatized with a Lif crystal. The structure was solved by the direct method ${ }^{9)}$ on the basis of $465|E|$ values above 1.30 , and was refined by the block-diagonalmatrix least-squares method with anisotropic temperature factors for all the

Table 2. The NMR spectra of 9-methyl-9-aza-3-oxabicyclo[3.3.1]nonan-7-ones ${ }^{a, b, c}$)

a) The spectra were measured in CDCl_{3} at 100 MHz with a JEOL High Resolution $\mathbb{N M}$ spectrometer, model JNM-PS-100. b) The abbreviations "br, d, do, s, m, and quin" mean "broad, doublet, double, singlet, multiplet, and quintet," respectively, and " $H_{2 e}$ and H_{A} " refer to "equatorial proton at C_{2} and one of ethyl methylene protons." c) The abbreviations " $\mathrm{J}_{1,2}$ e and $\mathrm{J}_{2, \mathrm{H}}$ " refer to "coupling constants between H_{1} and $H_{2 e}$ and between one of $H_{2 e}$ and $\mathrm{H}_{2 a}$ and one of H_{A} to H_{D}. d) The underlined δ values denote chemical shifts in CCl_{4}. e) The chemical shifts of $\mathrm{N}-\mathrm{CH}_{3}$ (singlet), acetoxyl methyl (singlet) and ethyl methyl protons (triplet with $\mathrm{J}=6.5-7.0 \mathrm{~Hz}$) fell within $\delta 2.49 \sim 2.61,2.02 \sim 2.05$, and $0.85 \sim 0.93$, respectively. f) The coupling constants were estimated by first-order approximations. g) The coupling constants, $J_{2 a}, 2 e(I)$, $J_{4 a, 4 e}$ (I to III), $J_{6 a, 6 e}$ (I to VIII), $J_{8 a, 8 e}$ (I to VIII) and $J_{C D}$ (II, VI and VII) were estimated to be $11.5,11 \sim 11.5,15 \sim 16,15 \sim 16$, and 11 Hz , respectively.
non-hydrogen atoms. Since a difference Fourier map yielded the locations of all the twenty-one hydrogen atoms, further least-squares refinement including these hydrogen atoms was carried out. The final R value was 5.7\%. The molecular framework thus obtained is shown in Fig. 2.

REFERENCES AND FOOTNOTES

1 N. C. Webb and M. R. Becker, J. Chem. Soc. (B), 1317 (1967); W. A. C. Brown, J. Martin, and G. A. Sim, J. Chem. Soc., 1844 (1965).

2 I. Fleming, S. W. Hanson, and J. K. M. Sanders, Tetrahedron Lett., 3733 (1971): J. M. McEuen, R. P. Nelson, and R. G. Lawton, J. Org. Chem., 35, 690 (1970); E. N. Marvel and R. S. Knutson, Ibid., 35, 388 (1970); R. A. Appleton, S. C. Egan, D.H.G., J. M. Evans, S. H. Graham, and J. R. Dixon, J. Chem. Soc. (C), 1110 (1968).
3 N. S. Zefirov, S. V. Rogozina, E. D. Kurkutova, V. Goncharov, and N. V. Belov, Chem. Comm., 260 (1974); P. D. Cradwick, and G. A. Sim, J. Chem. Soc. (B), 2218 (1971); C. Tamura and G. A. Sim, Ibid., 1241 (1968); M. Dobler and J. D. Dunitz, Helv. Chim. Acta, 47, 695 (1964).

4 a) S. F. Nelson, P. J. Hintz, and R. T. Landis, II, J. Amer. Chem. Soc., 94, 7105 (1972). b) C. Ganter, K. Wicker, W. Zwahlen, and K. Schaffner-Sabba, Helv. Chim. Acta, 53, 1618 (1970); P. R. Stapp and J. C. Randall, J. Org. Chem., 35, 2948 (1970); P. Bucci, G. Lippi, and B. Macchia, Ibid., 35, 913 (1970) ; R. J. Bishop, L. E. Sutton, M. J. T. Robinson, and N. W. J. Pumphrey, Tetrahedron, 25, 1417 (1969). c) F. Lautenschlager, J. Org. Chem., 34, 4002 (1969). d) R. A. Johnson, Ibid., 33, 3627 (1968); J. E. Douglass and T. B. Ratliff, Ibid., 33, 355 (1968); C.-Y. Chen and R. J. W. LeFévre, J. Chem. Soc. (B), 539 (1966).
5 T. Irie, M. Suzuki, and T. Masamune, Tetrahedron, 23, 4193 (1968); Tetrahedron Lett., 1091 (1965).
6 All new compounds gave elementary analyses, Mass and IR spectra in good accord with the assigned structures. II, mp 108.5-109.5*; III, oil; IV, mp 86-88 ${ }^{\circ}$; V, mp 89-90号 VI, mp 76-78 ${ }^{\circ}$; VII, oil; VIII, oil.
7 C. L. Zirkle, F. R. Gerns, A. W. Pavloff, and A. Burger, J. Org. Chem., 26, 395 (1961).
8 These aldehydes were prepared by ozonization of 2,5-dialkyl-2,5-dihydrofurans, which were obtained by treatment of 2,5-dibromofurans with ethyl magnesium bromide or by the Birch reduction of 5-alkyl-2-furoic acids followed by hydride reduction and acetylation. T. Masamune, S. Numata, and T. Sato, unpublished observations; T. Masamune, M. Ono, and H. Matsue, Bull. Chem. Soc. Japan, in press.
9 J. Karle and I. L. Karle, Acta Crystallogr., 21, 849 (1966).

