Tetrahedron Letters No. 45, pp 3933 - 3936, 1974. Pergamon Press. Printed in Great Britain.

CONFORMATIONS OF 2,4-SUBSTITUTED 9-METHYL-9-AZA-3-OXABICYCLO[3.3.1]NONAN-7-ONES

Tadashi Masamune,* Hajime Matsue, Satoshi Numata, and Akio Furusaki Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo, Japan

(Received in Japan 23 August 1974; received in UK for publication 2 October 1974)

Bicyclo[3.3.1.]nonane system provides interesting conformational problems. The molecules usually adopt preferentially the double-chair rather than the boat-chair conformation.¹⁾ However, relative stability between these conformations is also associated with the introduction of functional groups²⁾ and/or hetero-atoms into the framework.^{3,4)} In connection with synthetic studies of laurencin,⁵⁾ we prepared several entitled compounds and examined their conformations (and hence configurations). The present paper describes the result, which indicates that all the compounds exist in the double-chair conformation, irrespective of the presence of 2,4-diaxial substituents.

The examined compounds $(I \sim VIII)$,⁶⁾ listed in Table 1, were prepared newly, except 2,4-unsubstituted compound (I),⁷⁾ by the Robinson-Schöpf condensation of 2,4-dialkyl-3-oxaglutaraldehydes⁸⁾ with methylamine and acetone-dicarboxylic acid.

Table 1 9-Methyl-9-aza-3-oxabicyclo[3.3.1]nonan-7-ones

		r (c ₂)	R' (C ₄)		r (C ₂)	R' (C ₄)
	I	н	н	v	β-C ₂ H ₅	$\alpha - C_2^H _5$
	11	β -AcOCH ₂	н	VI	β -AcOCH ₂	^{β-C} 2 ^H 5
e^{1}	111	α -AcOCH ₂	н	VII	β -AcOCH ₂	$\alpha - C_2^H _5$
	IV	^{β-С} 2 ^Н 5	^{β-C} 2 ^H 5	VIII	α -AcOCH ₂	^{β-C} 2 ^H 5

The conformations were elucidated on the basis of the NMR spectra, exemplified by Fig. 1; the chemical shifts and coupling constants were estimated by comparison with those of analogous compounds $^{4b,4d)}$ as well as by extensive spin decoupling studies. The summarized result (Table 2) is completely consistent with the double-chair conformation for all compounds, though the conformations of N-methyl group were not assigned. The conclusive evidence was presented by the X-ray crystallography of compound VI.

The crystals are triclinic, with two molecules in a unit cell with the di-

Fig. 2 The molecular conformation and the bond distances $({\stackrel{\circ}{A}})$ of compound VI.

mensions of a = 8.660(2), b = 9.615(2), c = 8.816(2) Å, α = 72.28(2)°, β = 98.99(3)°, and γ = 97.85(2)°, The space group is PI. Intensities of 2360 unique reflections with 20 values up to 140° were measured on an automatic, four-circle diffractometer using CuK α radiation monochromatized with a LiF crystal. The structure was solved by the direct method⁹

on the basis of 465 |E| values above 1.30, and was refined by the block-diagonalmatrix least-squares method with anisotropic temperature factors for all the Table 2. The NMR spectra of 9-methyl-9-aza~3-oxabicyclo[3.3.1]nonan-7-ones^{a,b,c)}

Compounds	•		Che	emical	sifts	(8) ^{d,e}	e) and	Coupl	ing con	nstant	₃ (J) ^f ,g)		
	<u>H</u> 1	<u>н</u> 5	H _{2e}	H _{4e}	<u>H</u> 2a	H _{4a}	H_6e	<u>H</u> 8e	<u>H</u> 6a	<u>H</u> 8a	сн _з с <u>нан</u> в	Ac0C	H_H_D
I	3.ÍO	3.10	3.70	3.70	3.83	3.83	2.24	2.24	2.70	2.70	<u>-</u>	_	
	3.00	3.00	3.62	3.62	3.71	3.71	2.12	2.12	2.61	2.61			_
	br d,	br d,	d,	d,	br d,	br d,	d,	d,	do d,	do d,			_
II	3.08	3.08	3.80	3.51		4.03	2.20	2.20	2.53	2.78		4.68	4.23
	br d,	br d,	do d,	d,		br d,	d,	d,	do d,	do d,		do d,	do d
111	3.10	3.10	—	3.78	3.98	3.89	2.16	2.24	2.72	2.61		3.	98
	br d,	br d,		br d,	m,	br d,	br d,	br d,	do d,	do d,		br	S
IV	2.82	2.82	3.00	3.00			1.92	<u>1.92</u>	<u>2.51</u>	<u>2.51</u>	<u>1.62</u> <u>1.60</u>		<u> </u>
	br d,	br d,	do t,	do t,		—	d,	d,	do d,	do d,	quin, _q uin		
v	2.76	2.76	3.36			3.57	1.96	2.04	2.55	2.30	1.40	_	
	br d,	br d,	do d,		d	o do d,	d,	d,	do d,	do d,	complex m	-	-
VI	3.12	3.06	3.69	3.39		—	2.18	2.18	2.80	2.80	1.70	4.38	4.18
	br d,	d, b	r do d,	t,			d,	d,	do d,	do d,	quin,	do d,	do d
VII	3.06	2.99	3.83	-	.	3.80	2.23	2.17	2.55	2.74	1.38	4.69	4.22
	br d,	m, b	r do d,	—	—	br m,	d,	d,	do d,	do d,	complex m,	do d,	do d
VIII	3.10	3.04	_	3.56	4.00	—	2.19	2.19	2.75	2.55	1.58	4.	00
	br d,	br d,		do d,	m,	—	d,	d,	do d,	do d,	complex m,	br	S
	^J 1,2e	^J 5,4	e ^J 1,	2a ^J 5	,4a ^J	1,8e	^J 5,6e	J 1,8a	J 5,6	a	^Ј 2,Н	^Ј 4,н	
I	0.0	0.0	1,	0 1	.0	0.0	0.0	6.0	6.0				-
II	0.0	0.0		- 2	.0	0.0	0.0	6.0	6.0	8.	0 5.0		-
III		0.5	0.	51	.0	0.0	0.0	6.0	6.0		small		
IV	2.0	2.0				0.0	0.0	6.0	6.0	6.	5 6.5	6.5	6.5
v	0.0			- 2	.0	0.0	0.0	6.0	4.0	8	6	9	5
VI	1.5	0.0			_	0.0	0.0	6.0	6.0	7	7	8	5
VII	0.5	_	~	- 1	.0	0.5	1.5	6.0	6.0	8	6	?	
VIII	—	0.5	1.	0 -		0.0	0.0	6.0	6.0		small	8	6

a) The spectra were measured in CDCl₃ at 100 MHz with a JEOL High Resolution NMR spectrometer, model JNM-PS-100. b) The abbreviations "br, d, do, s, m, and quin" mean "broad, doublet, double, singlet, multiplet, and quintet," respectively, and "H_{2e} and H_A" refer to "equatorial proton at C₂ and one of ethyl methylene protons." c) The abbreviations "J_{1,2e} and J_{2,H}" refer to "coupling constants between H₁ and H_{2e} and between one of H_{2e} and H_{2a} and one of H_A to H_D. d) The underlined δ values denote chemical shifts in CCl₄. e) The chemical shifts of N-CH₃ (singlet), acetoxyl methyl (singlet) and ethyl methyl protons (triplet with J = 6.5-7.0 Hz) fell within δ 2.49 ~ 2.61, 2.02 ~ 2.05, and 0.85 ~ 0.93, respectively. f) The coupling constants were estimated by first-order approximations. g) The coupling constants, J_{2a,2e} (I), J_{4a,4e} (I to III), J_{6a,6e} (I to VIII), J_{8a,8e} (I to VIII) and J_{CD} (II, VI and VII) were estimated to be 11.5, 11 ~ 11.5, 15 ~ 16, 15 ~ 16, and 11 Hz, respectively. non-hydrogen atoms. Since a difference Fourier map yielded the locations of all the twenty-one hydrogen atoms, further least-squares refinement including these hydrogen atoms was carried out. The final R value was 5.7%. The molecular framework thus obtained is shown in Fig. 2.

REFERENCES AND FOOTNOTES

- N. C. Webb and M. R. Becker, <u>J. Chem. Soc</u>. (<u>B</u>), 1317 (1967); W. A. C. Brown, J. Martin, and G. A. Sim, <u>J. Chem. Soc</u>., 1844 (1965).
- 2 I. Fleming, S. W. Hanson, and J. K. M. Sanders, <u>Tetrahedron Lett.</u>, 3733 (1971); J. M. McEuen, R. P. Nelson, and R. G. Lawton, <u>J. Org. Chem.</u>, <u>35</u>, 690 (1970); E. N. Marvel and R. S. Knutson, <u>Ibid.</u>, <u>35</u>, 388 (1970); R. A. Appleton, S. C. Egan, D.H.G., J. M. Evans, S. H. Graham, and J. R. Dixon, <u>J. Chem.</u> <u>Soc</u>. (<u>C</u>), 1110 (1968).
- N. S. Zefirov, S. V. Rogozina, E. D. Kurkutova, V. Goncharov, and N. V. Belov, <u>Chem. Comm.</u>, 260 (1974); P. D. Cradwick, and G. A. Sim, <u>J. Chem. Soc.</u> (<u>B</u>), 2218 (1971); C. Tamura and G. A. Sim, <u>Ibid</u>., 1241 (1968); M. Dobler and J. D. Dunitz, <u>Helv. Chim. Acta</u>, <u>47</u>, 695 (1964).
- 4 a) S. F. Nelson, P. J. Hintz, and R. T. Landis, II, J. Amer. Chem. Soc., 94, 7105 (1972). b) C. Ganter, K. Wicker, W. Zwahlen, and K. Schaffner-Sabba, <u>Helv. Chim. Acta</u>, 53, 1618 (1970); P. R. Stapp and J. C. Randall, J. Org. <u>Chem.</u>, 35, 2948 (1970); P. Bucci, G. Lippi, and B. Macchia, <u>Ibid</u>., 35, 913 (1970); R. J. Bishop, L. E. Sutton, M. J. T. Robinson, and N. W. J. Pumphrey, <u>Tetrahedron</u>, 25, 1417 (1969). c) F. Lautenschlager, <u>J. Org. Chem</u>., 34, 4002 (1969). d) R. A. Johnson, <u>Ibid</u>., 33, 3627 (1968); J. E. Douglass and T. B. Ratliff, <u>Ibid</u>., 33, 355 (1968); C.-Y. Chen and R. J. W. LeFevre, <u>J. Chem</u>. Soc. (B), 539 (1966).
- 5 T. Irie, M. Suzuki, and T. Masamune, <u>Tetrahedron</u>, 23, 4193 (1968); Tetrahedron Lett., 1091 (1965).
- 6 All new compounds gave elementary analyses, Mass and IR spectra in good accord with the assigned structures. II, mp 108.5-109.5°; III, oil; IV, mp 86-88°; V, mp 89-90°; VI, mp 76-78°; VII, oil; VIII, oil.
- 7 C. L. Zirkle, F. R. Gerns, A. W. Pavloff, and A. Burger, J. Org. Chem., 26, 395 (1961).
- 8 These aldehydes were prepared by ozonization of 2,5-dialkyl-2,5-dihydrofurans, which were obtained by treatment of 2,5-dibromofurans with ethyl magnesium bromide or by the Birch reduction of 5-alkyl-2-furoic acids followed by hydride reduction and acetylation. T. Masamune, S. Numata, and T. Sato, unpublished observations; T. Masamune, M. Ono, and H. Matsue, <u>Bull</u>. Chem. Soc. Japan, in press.
- 9 J. Karle and I. L. Karle, Acta Crystallogr., 21, 849 (1968).

3936